Collision-Avoidance – Yachting https://www.yachtingmagazine.com Yachting Magazine’s experts discuss yacht reviews, yachts for sale, chartering destinations, photos, videos, and everything else you would want to know about yachts. Fri, 23 Aug 2024 17:00:06 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.2 https://www.yachtingmagazine.com/uploads/2021/09/favicon-ytg-1.png Collision-Avoidance – Yachting https://www.yachtingmagazine.com 32 32 Superyacht Collision, Sinking Incident, Takeaways and Lessons https://www.yachtingmagazine.com/yachts/collision-weather-incident-takeaways/ Fri, 23 Aug 2024 17:00:05 +0000 https://www.yachtingmagazine.com/?p=65773 Two Mediterranean superyacht incidents in two months prompts safety analysis.

The post Superyacht Collision, Sinking Incident, Takeaways and Lessons appeared first on Yachting.

]]>
waterspout
The Bayesian superyacht shipwreck may have been caused by a tornadic waterspout during intense storms Monday morning. adobe.stock/hit1912

Two superyacht incidents occurring within two months of each other in the Mediterranean are prompting experts to assess what went wrong and how to more safely navigate the high seas.

On July 22, the superyacht Venus owned by Laurene Powell Jobs –widow of former Apple CEO Steve Jobs– collided with another vessel off the coast of Italy. The incident was captured on video where crew members can be heard yelling as the ships drew nearer and bumped into each other.

On Monday, superyacht Bayesian owned by British technology businessman Mike Lynch was sunk during a storm off the coast of Sicily. The Independent reported that the Bayesian was carrying 22 people at the time, and Italian officials fear Lynch and five others may have been trapped inside the boat.

More recent reporting by The Independent on Wednesday states that five bodies have been recovered from the shipwreck so far, with one person still missing. The deceased have not yet been identified.

What Happened to the Bayesian?

It’s still unknown what caused the Bayesian to sink, but a recent New York Times article states witnesses described seeing a possible waterspout during Monday’s storm.

The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service describes two types of waterspouts: fair weather waterspouts and tornadic waterspouts.

“Tornadic waterspouts are tornadoes that form over water, or move from land to water,” NOAA’s National Ocean Service states on its website. “They have the same characteristics as a land tornado. They are associated with severe thunderstorms, and are often accompanied by high winds and seas, large hail, and frequent dangerous lightning.”

Fair weather waterspouts on the other hand are generally not associated with thunderstorms and form along the dark flat base of a line of developing cumulus clouds.

“While tornadic waterspouts develop downward in a thunderstorm, a fair weather waterspout develops on the surface of the water and works its way upward,” The National Ocean Service states. “By the time the funnel is visible, a fair weather waterspout is near maturity. Fair weather waterspouts form in light wind conditions so they normally move very little.”

Given this information, it’s more likely that Monday’s storms would have yielded a tornadic waterspout.

How to Avoid and Safely Navigate Waterspouts

NOAA’s Ocean Today website states that waterspouts are spotted in the Florida Keys more than any other place on earth. The organization warns sailors to watch the sky for certain types of clouds when trying to avoid these storms.

“In the summer, with light winds, look for a possible waterspout underneath a line of cumulus clouds with dark, flat bases,” Ocean Today states on its website. “Anytime of the year, a thunderstorm or line of thunderstorms, can produce very intense waterspouts.”

NOAA also advises captains to listen for special marine warnings about waterspout sightings that are broadcast on NOAA Weather Radio. In the case a waterspout is sighted, captains are advised to immediately head at a 90 degree angle from the apparent motion of the waterspout.

“Never try to navigate through a waterspout,” Ocean Today states. “Although waterspouts are usually weaker than tornadoes, they can still produce significant damage to you and your boat.”

Superyacht Captain Weighs in on Venus Collision

Superyacht Captain and social media influencer Kelly Gordon provided analysis of the Venus’ collision. She said that while there are many actions that could have been taken to avoid the collision, incidents like this one can happen quickly and allow minimal time to react.

“However, alarms should have been set on each vessel that would notify crew when another vessel is within a certain distance of theirs, wind alarms for when wind speeds exceed certain limits, anchor alarms to indicate drag, use of radar, and a proper bridge watch, to name a few,” Gordon told Yachting in an emailed statement. “One would think that they had time to react, but maybe not. Weighing anchor and maneuvering in these conditions can be extremely difficult.  Forward thinking and precautionary measures can never be understated regardless of the forecasted conditions.”

Gordon said that the individuals heard yelling in the video did not appear to be in uniform and were likely guests. While the video doesn’t make it clear whether or not the captains were communicating via radio, Gordon affirmed that they should have been doing so well in advance to this collision.

“You can hear that Lady Moura did sound their horn,” Gordon said. “What is interesting is that it was only one long blast and should have been 5 short blasts to indicate danger. Regardless, a blast was made and that would have gained the attention of a proper watchman. Again, it’s obvious that there was not a proper bridge watch being maintained on Venus, but why? While there are numerous errors that were made in this instance the most notable is that Venus did not have a proper bridge watch, but again, why not? Was it complete and gross negligence or were there demands placed on the captain and crew that caused them to be under crewed and overworked-this is often the case in this industry. …”

When it comes to reducing damage from this kind of accident, Gordon said that mitigating a collision happens well in advance of the collision.

“Collisions are meant to be prevented and not reacted to after it has occurred,” Gordon said. “I can’t emphasize enough the importance of a proper bridge watch and use of all means available to execute that watch. Not only is it important to utilize all means of equipment available, but also your senses. Action needs to be taken well in advance. You aren’t just on watch for your own vessel, but also for others that are around you as well.”

Gordon stresses that she is not judging the actions taken by other captains, who might just lack the resources and staff to do their job safely.

“I am not one to judge another captain’s actions,” Gordon said. “Being a captain is a very stressful and demanding job and I have long expressed to my crew that I would never be one to judge the actions of another.  In defense of the captain and crew one has to ask-were they under crewed?  Did the owners put extraneous demands and pressures on them? Were they allowed to maintain proper work/rest hours?  Was proper training provided? Yes, a master of this size of vessel should be extremely experienced, but you just don’t know what the crew were fully up against.”

The post Superyacht Collision, Sinking Incident, Takeaways and Lessons appeared first on Yachting.

]]>
High-Latitude Cruising Technology https://www.yachtingmagazine.com/story/electronics/high-latitude-cruising-technology/ Fri, 21 May 2021 22:44:06 +0000 https://www.yachtingmagazine.com/?p=49697 From thermal-imaging cameras to collision-avoidance systems and more, technology can make cold-weather cruising safer.

The post High-Latitude Cruising Technology appeared first on Yachting.

]]>
Arctic glaciers and water
Navigating waters as beautiful and wildly remote as these requires different equipment than normal. istock/elnavegante

Recent years have seen an uptick in the number of yachts and adventurous cruisers plying high-latitude waters from Alaska to Antarctica. While stunningly beautiful and largely void of other yachts and people, these regions require different kinds of electronics than a cruise to the Caribbean or a transatlantic passage.

Here’s a look at some systems yachtsmen might want to consider when planning a high-latitude cruise.

FarSounder Argos 350

Icebergs and their broken-off bergy bits are some of the greatest dangers that high-latitude cruisers face. FarSounder’s Argos 350 forward-looking sonar (call for pricing) is designed to spot these dangers for yachts that are 60 to 130-plus feet length overall, providing 1,150 feet of range at 18 knots in open waters.

The system employs a multibeam transducer, a power module, cabling, a processor and proprietary software, and it can be installed during construction or refitting. Once networked, the system delivers imagery to the yacht’s Ethernet network, allowing the imagery to be viewed on compatible screens.

Argos 350 systems provide detailed bottom mapping at a range of up to eight times the water depth, and they can detect objects in the water column out to their maximum 1,150-foot range. The system collects and processes its sonar returns in three dimensions, allowing it to compensate for pitch and roll. Additionally, the system employs color coding to alert users of dense objects, and to indicate depth or signal strength (users can switch between views).

Should the system detect a threat, it delivers audible and/or visual warnings based on a user’s parameters.

To minimize threats even further, anyone operating near ice should dramatically cut the yacht’s speed. While the system delivers 1,150 feet of range at 18 knots, the reality is that at 18 knots, a yacht covers 1,150 feet in 38 seconds. At 5 knots, users have two minutes and 16 seconds of reaction time. Provided that prudent seamanship is exercised, an Argos 350 should allow a yacht to ply truly spectacular waters.

Arctic glaciers and water
Glaciers regularly calve off chunks of ice that can be dangerous for yachts that aren’t properly equipped. istock/saiko3p

FLIR M364C

Adventure cruising requires sharp eyes, but human eyes simply can’t detect minute thermal differences between an object and its background. This is what FLIR’s thermal-imaging cameras are designed to do. FLIR’s recreational marine cameras range from $3,500 to $180,000, and the M364C ($20,500) is ideally suited to high-latitude cruising.

The gyrostabilized, dual-payload M364C can pan through 360 degrees and tilt through plus or minus 90 degrees. It has a high-definition, Sony-built daylight camera with a 30x optical zoom and 12x digital zoom. All up, this equates to a 360x zoom.

But it’s the unit’s thermal-imaging camera that’s best suited for detecting ice, other vessels and marine life. This camera has a FLIR-built Boson 640 thermal-imaging core that delivers 640-by-512-pixel image resolution, a 24-by-18-degree field of view and an 8x digital zoom.

Additionally, this camera sports FLIR’s Color Thermal Vision and Multispectral Dynamic Imaging (MSX) technologies. CTV blends imagery from the daylight and thermal-imaging cameras and overlays it with color to enhance object identification. MSX adds details that make faint edges look crisp. So the skipper can see, say, a distant bergy bit or a menacing polar bear.

BSB Marine Oscar

BSB Marine developed its Oscar collision-avoidance system for offshore sailors, and then it created Oscar Custom Power for motoryachts.

The optical-based system ($70,000) consists of a vision unit that is mounted aloft and a belowdecks central processing unit. The VU consists of three FLIR-built, 640-by-512 thermal-imaging cameras that deliver 123-degree horizontal and 32-degree vertical fields of view, as well as 3,040 feet of range. The CPU is a black-box computer that analyzes the cameras’ video streams to detect objects in near real time. The system also includes an app that delivers a visual reference and AIS-type information (such as speed and bearing) on the target, and that can reside on a personal computer, wireless device or multifunction display.

The CPU uses artificial intelligence to compare all detected objects with its stored database of 55 million-plus images (including icebergs viewed from myriad angles and in varied sea states). Oscar then automatically adjusts the yacht’s autopilot if it “sees” a navigational danger, and it can simultaneously evade several targets.

As with the other technologies discussed here, slower speeds buy operators more reaction time, which is key for negotiating ice-choked waters.

Furuno Ice Radar

If high-latitude aspirations involve wending through pack ice, then Furuno’s ice-detection radar is worth exploring. The system uses a Furuno X-band navigation radar ($11,000 to $40,000) and a FICE-100 module ($40,000). The FICE-100′s processor leverages the X-band radar’s raw data to create highly detailed composite radar imagery of the surrounding ice pack at a range of 3 to 6 nautical miles.

The FICE-100 concentrates its processing power on returns from the lower portion of the radar’s transmitted vertical beam, then lowers the signal’s noise floor. The resulting imagery captures fine details that would otherwise be lost. Moreover, the system creates its composite imagery using as many as 100 radar sweeps (older sweeps are usurped by newer ones), a process that can take four minutes and 16 seconds to build out initially. Furuno’s X-band radars operate at 24 rpm.

While the system was designed for commercial ships, it can be fitted aboard expedition-grade yachts that have the belowdecks space to accommodate the X-band radar’s dedicated display and the FICE-100. The system’s digital-video-cable outputs allow users to look at navigational radar imagery on a networked Furuno multifunction display and at ice-detecting imagery on the dedicated display.

Arctic glaciers and water
The old adage about tips of icebergs stands. Fortunately, modern electronics can allow safe navigation. istock/jocrebbin

Lars Thrane LT-3100S

VSAT antennas provide fast satellite communications, but they’re beholden to coverage maps that sometimes exclude the high latitudes. Global Maritime Distress and Safety System terminals provide a safety net via satellite by transmitting emergency signals—including the vessel’s name and location—to, and enabling two-way voice calls with, a terrestrially based Rescue Coordination Center.

Lars Thrane’s LT-3100S terminal (call for pricing) operates on Iridium’s network of 66 cross-linked low-Earth-orbit satellites. The system leverages Iridium’s Short Burst Data messaging service to transmit small, low-bandwidth data packets while providing a dedicated voice channel. For mariners, this means global access to text messages, email, GRIB weather files, official maritime safety information, and emergency and nonemergency voice calls.

While the LT-3100S delivers significantly slower data-transfer rates than VSAT (read: no Zoom meetings), it’s fast enough to let users make affordable nonemergency voice calls and send and receive critical information. Better still, users can access itinerary-specific information from Iridium’s global partner network (things such as ice-pack reports from Iridium’s Russian partners) or—should troubles arise—transmit a distress signal and call an RCC.

Garmin InReach

For yachtsmen who want to send two-way emergency communications and nonemergency text communications, share a location, and get marine-weather updates—but who don’t want the complication of a GMDSS terminal—Garmin’s InReach satellite communicators ($350 to $650) could be the ticket. While InReach doesn’t offer the same capabilities as a GMDSS terminal, these pocket-size devices work globally via Iridium’s satellite network with an airtime subscription, and they allow users to post messages to social media platforms. The InReach devices also can be paired with smartphones, and friends and family can ping an InReach device for its location information.

Furuno SCX-20/SCX-21

Magnetic compasses have guided mariners for centuries, but as the devices approach the Earth’s magnetic poles, their magnetic declination increases, making them unusable. Alternatively, satellite compasses harness satellite signals to determine heading information.

Furuno’s NMEA 2000-certified SCX-20 and NMEA 0183-compatible SCX-21 (each $1,200) have four global-navigation-satellite-system antennas that allow the compasses to generate highly accurate heading, pitch, roll and heave data, even in heavy seas or when the compasses can only receive GNSS information from a single satellite (say, because of signal blockage from a mountain or an iceberg). These compasses can share the information with networked instruments and systems such as autopilots, chart plotters and radars using their NMEA 0183/2000 connectivity.

EPIRBs and PLBs with Return Link Service

Vessel-registered EPIRBs and individually registered personal locator beacons have saved countless lives, but historically, distressed mariners couldn’t be sure their emergency signals reached the rescuing authorities.

Next-generation devices allow COSPAS-SARSAT to send a Return Link Service confirmation to the beacon. While the Return Link Service is operational, EPIRBs and PLBs enabled with the technology aren’t yet widely available; yachtsmen can find them in the United Kingdom, France, Greenland, Iceland, the Faroe Islands and Norway.

The post High-Latitude Cruising Technology appeared first on Yachting.

]]>
Oscar Collision-Avoidance System Now Available https://www.yachtingmagazine.com/story/electronics/oscar-collision-avoidance-system-new-available/ Wed, 24 Jun 2020 00:55:19 +0000 https://www.yachtingmagazine.com/?p=50580 The BSB Group in Austria says its Oscar collsion-avoidance system is now commercially available.

The post Oscar Collision-Avoidance System Now Available appeared first on Yachting.

]]>
Oscar collision avoidance system
Oscar uses artificial intelligence to detect obstructions in the water. Courtesy Oscar Systems

Oscar is an automated monitoring system whose “eyes” are thermal and color cameras that feed information to a “brain” powered by artificial intelligence. The system was developed in cooperation with offshore-racing teams, and is being marketed for use aboard everything from day cruisers to superyachts.

The system detects floating objects to reduce the risk of a collision. “Non-signaled crafts, sleeping whales, wooden logs, containers and debris or other floating objects are detected, which neither the crew nor the radar or sonar system will detect,” according to the company. “Owners, skippers and crews benefit from increased safety as well as more comfort and peace of mind during navigation, especially at night.”

The developers say the goal for the Oscar system is to connect it to a boat’s autopilot, to automatically change the boat’s trajectory to avoid a collision risk.

Can Oscar’s data be tied into a multifunction screen? Yes. The Oscar Advanced Series also can be integrated with a boat’s communications bus.

Take the next step: Go to oscar-system.com

The post Oscar Collision-Avoidance System Now Available appeared first on Yachting.

]]>